CTAN Comprehensive TeX Archive Network

Directory macros/latex/contrib/mlmath

README.md

Suggested Notation for Machine Learning

Authors

Introduction

This introduces a suggestion of mathematical notation protocol for machine learning.

The field of machine learning is evolving rapidly in recent years. Communication between different researchers and research groups becomes increasingly important. A key challenge for communication arises from inconsistent notation usages among different papers. This proposal suggests a standard for commonly used mathematical notation for machine learning. In this first version, only some notation are mentioned and more notation are left to be done. This proposal will be regularly updated based on the progress of the field. We look forward to more suggestions to improve this proposal in future versions.

Tabel of Contents

Dataset

Dataset $S={mathbf{z}i}^n{i=1}={(mathbf{x}i,mathbf{y}i)}^n{i=1}$ is sampled from a distribution $mathcal{D}$ over a domain $mathcal{Z}=mathcal{X}timesmathcal{Y}$.

  • $mathcal{X}$ is the instances domain (a set)
  • $mathcal{Y}$ is the label domain (a set)
  • $mathcal{Z}=mathcal{X}timesmathcal{Y}$ is the example domain (a set)

Usually, $mathcal{X}$ is a subset of $mathbb{R}^d$ and $mathcal{Y}$ is a subset of $mathbb{R}^{dtext{o}}$, where $d$ is the input dimension, $dtext{o}$ is the ouput dimension.

$n=#S$ is the number of samples. Wihout specification, $S$ and $n$ are for the training set.

Function

A hypothesis space is denoted by $mathcal{H}$. A hypothesis function is denoted by $f{mathbf{theta}}(mathbf{x})inmathcal{H}$ or $f(mathbf{x};mathbf{theta})$ with $f{mathbf{theta}}:mathcal{X}tomathcal{Y}$.

$mathbf{theta}$ denotes the set of parameters of $f{mathbf{theta}}$.

If there exists a target function, it is denoted by $f^$ or $f^:mathcal{X}tomathcal{Y}$ satisfying $mathbf{y}i=f^(mathbf{x}i)$ for $i=1,dots,n$.

Loss function

A loss function, denoted by $ell:mathcal{H}timesmathcal{Z}tomathbb{R}{+}:=[hbf{x}) + mathbf{b}^{l-1})$, $l$-th layer output | $f{mathbf{theta}}(mathbf{x})$ | $=f{mathbf{theta}}^{L}(mathbf{x})=mathbf{W}^{L-1} f{mathbf{theta}}^{L-1}(mathbf{x}) + mathbf{b}^{L-1}$, $L$-layer NN |

Acknowledgements

Chenglong Bao (Tsinghua), Zhengdao Chen (NYU), Bin Dong (Peking), Weinan E (Princeton), Quanquan Gu (UCLA), Kaizhu Huang (XJTLU), Shi Jin (SJTU), Jian Li (Tsinghua), Lei Li (SJTU), Tiejun Li (Peking), Zhenguo Li (Huawei), Zhemin Li (NUDT), Shaobo Lin (XJTU), Ziqi Liu (CSRC), Zichao Long (Peking), Chao Ma (Princeton), Chao Ma (SJTU), Yuheng Ma (WHU), Dengyu Meng (XJTU), Wang Miao (Peking), Pingbing Ming (CAS), Zuoqiang Shi (Tsinghua), Jihong Wang (CSRC), Liwei Wang (Peking), Bican Xia (Peking), Zhouwang Yang (USTC), Haijun Yu (CAS), Yang Yuan (Tsinghua), Cheng Zhang (Peking), Lulu Zhang (SJTU), Jiwei Zhang (WHU), Pingwen Zhang (Peking), Xiaoqun Zhang (SJTU), Chengchao Zhao (CSRC), Zhanxing Zhu (Peking), Chuan Zhou (CAS), Xiang Zhou (cityU).

Download the contents of this package in one zip archive (101.4k).

MLMath – Mathematical notation for Machine Learning

This package introduces a suggestion of a mathematical notation protocol for machine learning.

The field of machine learning has been evolving rapidly in recent years. Communication between different researchers and research groups becomes increasingly important. A key challenge for communication arises from inconsistent notation usages among different papers. This proposal suggests a standard for commonly used mathematical notation for machine learning.

PackageMLMath
Bug trackerhttps://github.com/Mayuyu/suggested-notation-for-machine-learning/issues
Repositoryhttps://github.com/Mayuyu/suggested-notation-for-machine-learning
Version1.0.0
LicensesThe Project Public License 1.3c
Copyright2020 Zheng Ma, Zhiqin Xu, Tao Luo and Yaoyu Zhang
MaintainerZheng Ma
Contained inMiKTeX as mlmath
TopicsMaths
...
Guest Book Sitemap Contact Contact Author